

Current Transducer GO-SME/SP2 series

 $I_{PN} = 12 \dots 20 A$

Ref: GO 12-SME/SP2, GO 20-SME/SP2

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Hall effect measuring principle
- Galvanic separation between primary and secondary circuit
- Insulated test voltage 2500 V RMS
- Low power consumption
- Extremely low profile
- Response time 2 μs.

Special feature

• Ratiometric output.

Advantages

- Small size and space saving
- · High immunity to external interference
- · High insulation capability
- Low electrical resistance (0.9 mΩ)
- No magnetic hysteresis
- Robust against external fields and cross-talk.

Applications

- Small drives
- HVAC
- Appliances
- E-Bikes.

Standards

- IEC 61800-5-1: 2007
- IEC 62109-1: 2010
- IEC 60950-1: 2005
- UL 1577: 2014.

Application Domains

Industrial.

Absolute maximum ratings

Parameter	Symbol	Unit	Min	Тур	Max	Conditions
Maximum supply voltage (not destructive)					8	
Maximum supply voltage (not entering non-standard modes)	$U_{\mathrm{C}\mathrm{max}}$	V			6.5	
Maximum overload capability	$\hat{I}_{\mathrm{P max}}$	А			±200	T _A = 25 °C, 1 ms pulse
Maximum electrostatic discharge voltage (HMB-Human Body Model)	$U_{\rm ESD\; HBM}$	V			2000	AEC-Q100-002 REV D
Maximum electrostatic discharge voltage (CDM-Charged Device Model)	$U_{\rm ESD\;CDM}$	V			500	AEC-Q100-011 REV B
Maximum output current source	I _{out max}	mA			25	
Maximum output current sink	$I_{ m out\; max}$	mA			50	
Maximum junction temperature	$T_{ m Jmax}$	°C			150	

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	U_{d}	V	2500	According to IEC 60664-1
RMS voltage for AC insulation test, 60 Hz, 1 min	U_{d}	V	2500	According to UL 1577
RMS voltage for AC insulation test, 50 Hz, 1 min	U_{d}	V	2400	According to IEC 60950-1
Impulse withstand voltage 1.2/50 µs	\hat{U}_{W}	V	4000	According to IEC 61800-5-1 , IEC 62109-1, UL 60950-1
Partial discharge RMS test voltage ($q_{\rm m}$ < 5 pC)	U_{t}	V	850	Primary/secondary Corresponds to a recurring peak voltage of 728 V peak-to- peak According to IEC 61800-5-1, IEC 62109-1
Clearance (pri sec.)	d_{CI}	mm	4	Shortest distance through air
Creepage distance (pri sec.)	d_{Cp}	'''''		Shortest path along body
Comparative tracking index	CTI		600	
Application example		V	300 V RMS CAT II, PD2	Basic insulation according to IEC 61800-5-1, IEC 62109-1, IEC 60950-1

UL 1577 Non Optical isolating devices - Component

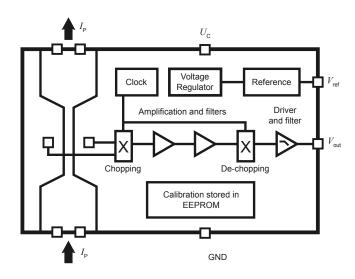
File # E486776, Vol 1 Single protection, non-optical isolators, 2500 vac insulation

Standards

- UL 1577, Optical Isolators;
- CSA Component Acceptance Service Notice N°. 5 A, Component Acceptance Service for Optocouplers and Related Devices.

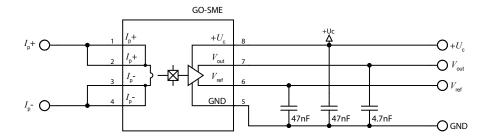
Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.



Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Conditions
Ambient operating temperature	T_{A}	°C	-40		125	
Ambient storage temperature	$T_{\rm S}$	°C	-55		165	
Resistance of the primary @ T_A = 25 °C	R_{P}	mΩ		0.9		
Thermal resistance, junction to board 1)	$R_{ m th\ JB}$	°K/W		15		
Time constant	t	s		1		To reach steady state


Note: 1) Done on LEM evaluation board PCB 2320.

Block diagram

Connection diagram

Pin#	Name	Function			
From 1 to 2	I_{P^+}	Input of the primary current			
From 3 to 4	$I_{P^{-}}$	Output of the primary current			
5	GND	Ground			
6	$V_{ m ref}$	Reference voltage (output)			
7	$V_{ m out}$	Output voltage			
8	U_{C}	Supply voltage			

Electrical data GO 12-SME/SP2

At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Conditions
Primary nominal RMS current	I_{PN}	А		12		
Primary current, measuring range	I_{PM}	А	30.3		30.3	
Supply voltage 1)	U_{c}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		20	26	
Reference voltage (output)	$V_{ m ref}$	V		U _c /2		@ 25 °C
Reference voltage (input)	$V_{ m ref}$	V	0.5		1.7	
Output voltage range @ $I_{\rm PM}$	$V_{\rm out}$ – $V_{\rm ref}$	V	-2		2	
Output internal resistance	$R_{\rm out}$	Ω			5	Up to 10 kHz
Reference internal resistance	$R_{\rm ref}$	Ω	120	200	333	
Capacitive loading	C_{L}	nF	0		6	
Theoretical sensitivity	G_{th}	mV/A		66		
Electrical offset voltage @ I_{PN} = 0	V_{OE}	mV	-5		5	$T_{\rm A}$ = 25 °C, $V_{\rm out} - V_{\rm ref}$ @ $V_{\rm ref}$ = 1.65 V
Electrical offset current referred to $I_{\rm PN}$	I _{OE}	mA	-75		75	T _A = 25 °C
Temperature coefficient of V_{ref}	TCV_{ref}	ppm/K	-150		150	V _{ref} = 1.65 V
Temperature coefficient of V_{OE}	TCV_{OE}	mV/K	-0.075		0.075	
Temperature coefficient of $I_{\text{O E}}$	TCI_{OE}	mA/K	-1.14		1.14	
Temperature coefficient of G	TCG	ppm/K	-150		150	
Step response time to 90 % of $I_{\rm PN}$	$t_{\rm r}$	μs			2	
Reaction time @ 10 % of I_{PN}	t _{ra}	μs			1.5	
Frequency bandwidth −3 dB, T _A = 25 °C	BW	KHz		300		
Output noise voltage spectral density	e_{no}	μV/Hz ^{1/2}		10		NBW = 1 kHz 100 kHz
Sensitivity error	$arepsilon_{G}$	%	-1		1	Factory adjustment
Linearity error 0 I_{PN}	$arepsilon_{L}$	% @ I _{P N}	-0.3		0.3	
Linearity error 0 I_{PM}	$arepsilon_{L}$	% @ I _{P M}	-0.6		0.6	
Accuracy @ I _{PN}	X	% @ I _{PN}	-1.3		1.3	T _A = 25 °C
Accuracy @ I_{PN} @ T_A = 85 °C ²⁾	X	% @ I _{PN}	-3.1		3.1	
Accuracy @ I_{PN} @ T_A = 105 °C	X	% @ I _{PN}	-3.7		3.7	
Accuracy @ I_{PN} @ T_A = 125 °C	X	% @ I _{PN}	-4.3		4.3	

Notes: 1) The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{c} relative to the following formula:

$$I_{P} = (\frac{5}{U_{C}} \times V_{out} - V_{ref}) \times \frac{1}{G}$$
 with G in (V/A)

$$^{2)}$$
 Accuracy G :
$$\varepsilon_{\rm TA} = (\varepsilon_{\rm L} + \varepsilon_{\rm G}) + \left(\frac{TCV_{\rm O\,E}}{I_{\rm P\,N} \times G} + TCG \times 10^{-6}\right) \times (T_{\rm A} - 25) \times 100$$

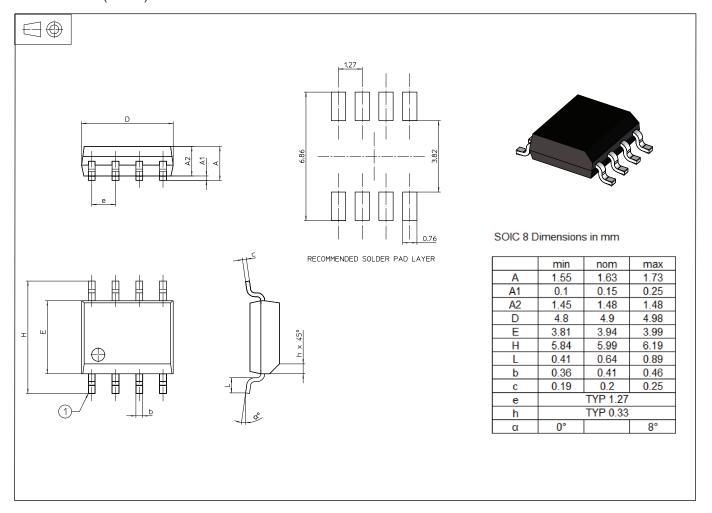
Electrical data GO 20-SME/SP2

At $T_{\rm A}$ = -40 °C ... 125 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted.

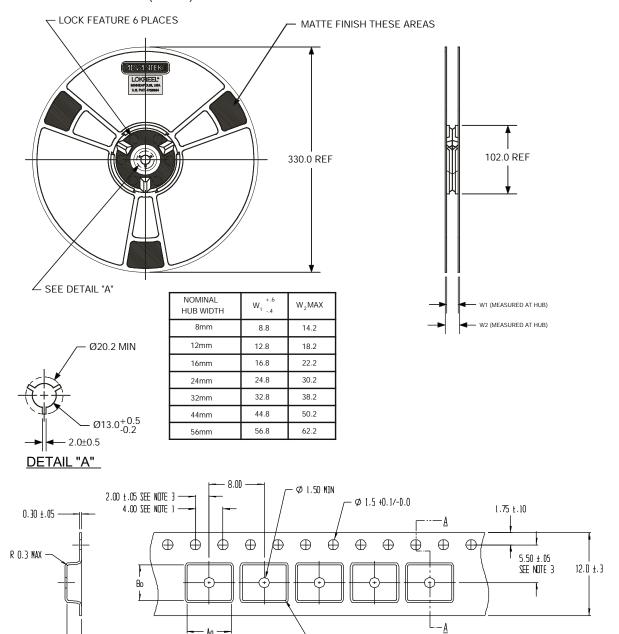
Parameter	Symbol	Unit	Min	Тур	Max	Conditions
Primary nominal RMS current	I_{PN}	А		20		
Primary current, measuring range	I_{PM}	А	-50		50	
Supply voltage	U_{C}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		20	26	
Reference voltage (output)	$V_{ m ref}$	V		<i>U</i> _c /2		@ 25 °C
Reference voltage (input)	$V_{ m ref}$	V	0.5		2.6	U _C = 5 V
Output voltage range @ $I_{\rm PM}$	$V_{ m out}$ – $V_{ m ref}$	V	-2		2	
Output internal resistance	$R_{\rm out}$	Ω			5	Up to 10 kHz
Reference internal resistance	$R_{ m ref}$	Ω	120	200	333	
Capacitive loading	C_{L}	nF	0		6	
Theoretical sensitivity	G_{th}	mV/A		40		
Electrical offset voltage @ $I_{PN} = 0$	V_{OE}	mV	-5		5	$T_{\rm A}$ = 25 °C, $V_{\rm out} - V_{\rm ref}$ @ $V_{\rm ref}$ = 2.5 V
Electrical offset current referred to $I_{\rm PN}$	I _{OE}	mA	-125		125	T _A = 25 °C
Temperature coefficient of V_{ref}	$TCV_{\rm ref}$	ppm/K	-150		150	V _{ref} = 1.65 V
Temperature coefficient of $V_{\rm OE}$	TCV_{OE}	mV/K	-0.075		0.075	
Temperature coefficient of $I_{\text{O E}}$	TCI _{OE}	mA/K	-1.88		1.88	
Temperature coefficient of G	TCG	ppm/K	-150		150	
Step response time to 90 % of $I_{\rm PN}$	$t_{\rm r}$	μs			2	
Reaction time @ 10 % of I_{PN}	t _{ra}	μs			1.5	
Frequency bandwidth -3 dB, T_A = 25 °C	BW	KHz		300		
Output noise voltage spectral density	e_{no}	μV/Hz ^{1/2}		7		NBW = 1 kHz 100 kHz
Sensitivity error	$arepsilon_{G}$	%	-1		1	Factory adjustment
Linearity error 0 I_{PN}	$arepsilon_{L}$	% @ I _{P N}	-0.3		0.3	
Linearity error 0 I_{PM}	$arepsilon_{L}$	% @ I _{P M}	-0.6		0.6	
Accuracy @ I _{PN}	X	% @ I _{PN}	-1.3		1.3	T _A = 25 °C
Accuracy @ I_{PN} @ T_A = 85 °C 1)	X	% @ I _{PN}	-3.1		3.1	
Accuracy @ I_{PN} @ T_A = 105 °C	X	% @ I _{PN}	-3.7		3.7	
Accuracy @ I_{PN} @ T_{A} = 125 °C	X	% @ I _{PN}	-4.3		4.3	

Notes: 1) The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{C} relative to the following formula:

$$I_{\rm p}$$
 = ($\frac{5}{U_{\rm c}}$ × $V_{\rm out}$ - $V_{\rm ref}$) × $\frac{1}{G}$ with G in (V/A)


2) Accuracy G:

$$\varepsilon_{\text{TA}} = (\varepsilon_{\text{L}} + \varepsilon_{\text{G}}) + \left(\frac{TCV_{\text{OE}}}{I_{\text{PN}} \times G} + TCG \times 10^{-6}\right) \times (T_{\text{A}} - 25) \times 100$$



Dimensions (in mm)

Tape and reel dimensions (in mm)

1) 10 Sprocket hole pitch cumulative tolerance ±0.2 mm Notes:

Ko

<u>SECTION A - A</u>

Αo

R 0.3 TYP.

²⁾ Camber in compliance with EIA 481

³⁾ Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Soldering requirements

MSL3, 260 °C - IPC/JEDEC J-STD-020

Ordering information

Item number	Description	Package type	Package quantity
G2.05.14.002.0	GO 12-SME/SP2	Reel	3000
G2.05.14.102.0	GO 12-SME/SP2 KIT 5P	Blister	5
G2.05.14.302.0	GO 12-SME/SP2 SET OF 50 PCS	ESD Bag	50
G2.05.17.002.0	GO 20-SME/SP2	Reel	3000
G2.05.17.102.0	GO 20-SME/SP2 KIT 5P	Blister	5
G2.05.17.302.0	GO 20-SME/SP2 SET OF 50 PCS	ESD Bag	50